
TiON PAGE IWft nJ
t" Idid ofi f-frnf tion .= C"ammau pp r a o w " W.' m or ja" " " Oft ast .,

0 1 '
4
iurtm sei DreOtctors dntl" M Ossega. ja" Agum% Ilii fffAD-A22 1 951 W7 3.RPR YAOOTS COV89I
lina Report, 1__Dec_88_to__30_Nov_89

4. TITLE AND SUITITL 5. FUNDING NUMBERS
CSRD PARALLEL SERVICE ItACHINE ENHANCEMENT AFOSR-89=0166

61104D 3842/AS

6 AUTHOR(S)
Dr. David J. Kuck

7. PERPORMING ORGANIZATION NAMI(S) AND AOORESS(ES) 6. PERUIORMIIEG ORGANIZATION

University of Illinois WOR NUMBER

Center for Supercomputer
fesearch and Development &a?06R o 9 0 -w 0 4 6 3
Urbana, IL 61801

9. SPONSORING/- MONITORING AGENCY NAME(S) AND AOORESS4ES) 10. SPONSORING/MONITORING
AGENCY REOORT NMBE

AFOSR?NiI,
Building 410 AFOSR-890166
Boiling AFB, DC 20332-6448

I PPUjMUENTAAY NOTES

12&. OSSTUIUT1O AVALAUIUTY STATEMENT lab. OISTRUMT0ON COOS

Approved for puhlic reiet'ISOI
distribution unlimited.

13. ABSTRACT (Mazaanum 200 wOMW*

.The three major areas in which the Center for Supercomputing Research
and Development (CRSD) has performed research involving DOD support
are: I') Parallel Computer Systems Design Evaluation and Simulation
Environment* ii) Automatic Restructuring and Concurrent Evaluation of
Lisp' III) 'Parallel Iterative Solver for Sparse NonsymmetriC Linear
Systems. This proposal requested funds to procure additional
processors for the Cedar computer system (KLSD84]. These funds
enhanced the research capability of CSRD to perform research in the
above mentioned areas. Also procurred were disk drives to enhance the
storage capacity of this system. -- ~~

14. SUBJECT TamaS 8 a" fPW

ISW N=C CONS

17. SEHUN"T CASSMfiATIN 15 SECURITY CLASS111CATION 19. SECURITYF CLASIIAT 3&. ITATIO 0ABSTRACT
Of REPO0T OF THIS PAGE OF ABSTRACT

UNCLASSIFIED U14CLASSIFIED UNCLASSIFIED SAR

PooN 71001-IN0450 Standard Form 29B (Rev. 249)
P'qt~E~ AMt Sm. MI.S



The three major areas in which the Center for Supercomputing Research and Development
(CSRD) has performed research involving DOD support are:

I I. Parallel Computer Systems Design Evaluation and Simulation EnvironmentII. Automatic Restructuring and Concurrent Evaluation of Lisp

IlI. Parallel Iterative Solver for Sparse Nonsymmetric Linear Systems

This proposal requested funds to procure additional processors for the Cedar computer sys-
tem [KLSD84]. These processors enhanced the research capability of CSRD to perform research
in the above mentioned areas. Also procurred were disk drives to enhance the storage capacity of

Ithis system.

Equipment Quantity Manufacturer Unit Price Amount

Computational Elements 6 Alliant Comp. Sys. $40,670.00 $244,020.00
Disk Drived 2 Fujitsu $4,782.50 $9,565.00

shipping $127.50

$253.712.50
Transfer to non-federal funds

to close-out account -132.50

TOTAL $253,580.00

Accession For

NTIS GR&I A
DTIC TABUrmnn :"'.ed LI
Ju ~t l 'ct ioa

I - ... Codes -

n -ts t .. c

'AgL1I



I. Parallel Computer System Design Evaluation and Simulation Environment

One of the major activities of CSRD is evaluating various multiprocessor architectures.
Simulation is the only way of predicting the performance of and comparing different multiproces-
sor organizations. The problem is such simulations take enormous amounts of computer time
even when a system model is not very detailed. This is not surprising as uniprocessor simula-
tions using large realistic benchmarks can be extremely time consuming. Multiprocessor simula-
tion complexity grows at least as fast as the number of processors in the system, and in reality
quite a bit faster due to interaction between processors. Parallel simulation is one approach to
increasing the speed of simulations of computer systems. It requires a parallel system to execute
the simulator to achieve the speedup. We have used additional CEs purchased from Alliant to
increase the amount of hardware parallelism to improve performance.

Two main parallel simulation activities we have at CSRD are 1) simulating a class of sys-
tems represented by Cedar, and 2) developing a parallel execution system for a high-level system
description language. The first activity represents a special-purpose parallel simulator that can
only be re-configured to model one class of systems. The second one is a part of an environment
project that, has aa its goals ease of description, model reuse, and fast evaluation of different
architectures. In both cases the underlying idea is to use a register-transfer level description of a
system and exploit parallelism available in hardware at this level. Both systems are hierarchical,
however, and do not require everything to be modeled at this level.

The special-purpose simulator has been used to simulate shared memory multiprocessor
systems with interleaved memory system and two unidirectional interconnection networks. We
have modeled the effect of various parameters for a range of systems sizes concentrating on from
32 to 512 processors. Both synthetic and trace-driven workloads have been used and the perfor-
mance of the two models correlated. System parameters varied include network organization,
memory interleaving and speed, data path and message length, burst traffic characteristics,
conflict resolution, etc [Turn89]. We are in the process of verifying the simulator by modeling
the current Cedar configuration and comparing the results with actual measurements.

The general-purpose parallel simulator is based on the ideas and experience derived from
the special-purpose case. We currently have a prototype execution system developed and are
evaluating its performance. One of the main questions we are trying to answer is the amount of
parallelism one can find and exploit on average in simulating a multiprocessor system. The
experience with special-purpose simulation and preliminary results with the general-purpose sys-
tem are very encouraging. The mechanism used for the parallel evaluation and the data struc-
tures involved can have a major impact on performance. We are considering alternatives and
will evaluate their behavior and performance.

II. Automatic Restructuring and Concurrent Evaluation of Lisp

111. Parcel

Parcel is an investigation of the compilation of sequential Scheme programs for execution on
a shared-memory multiprocessor. The Parcel system has two components: a parallelizing com-
piler, that produces from a sequential Scheme program a machine-independent parallel inter-
mediate form, and a code generator/run-time system, via which the intermediate form is
expanded into machine instructions for the Alliant FX/8 and linked to a parallel run-time sys-
tem to form an executable.



11.2. The Parcel Compiler

The Parcel compiler operates in three phases: interprocedural analysis, standard transfor-
mations, and parallelizing transformations.

Interprocedural analysis in Parcel takes the form of an abstract interpretation of the pro-
gram. The abstract domains over which this interpretation takes place are built upon a mechan-
ism for recording the interprocedural movements made by dynamically allocated objects. In
terms of these movements, the analysis determines the visibility of any side-effects upon an
object, and determines the lifetime of the object, in such a way that it may be placed on a stack
or in a hierarchical memory as its required lifetime permits. This analysis is described in detail
in [Harr89].

A number of standard transformations are performed upon each procedure of the program
by Parcel, prior to parallelization. These transformations are optimizations that are beneficial
from the standpoint of both parallel and sequential execution. For example, procedure integra-
tion is performed because it both eliminates the expense of procedure invocation, and makes code
motion during parallelization more effective, by allowing it to be applied to a larger procedure
body. Similarly, invariant floating eliminates needless repetition of an evaluation, and may at
the same time remove spurious control dependences from a procedure.

A number of parallelizing transformations tailored specifically to symbolic programs ori-
ginated in Parcel. For example, we introduced a quite general means of paralleling exit loops
(generalized While/Repeat structures) by means of boolean recurrences in conjunction with loop
distribution. A transformation called recursion splitting is used to rewrite self-recursive pro-
cedures as a complementary pair of loops, one of which performs the downward portion of a
recursive computation, the other of which performs the upward portion. These transformations
are described in [Harr89, HaPa88].

11.3. The Parcel Run-time System

From every procedure of a program, Parcel produces two transformed versions, one sequen-
tial and the other parallel. These two versions are presented, in intermediate form, to the code
generator, which expands them into machine code and links them to the run-time system to
form an executable.

The run-time system has, in addition o the usual sequential functionality of a Scheme
run-time system, a microtasking library f,- tw, scheduling of parallel activity, a parallel storage
allocator and deallocator (garbage collectui nd a library of parallel recurrence solvers, for
recurrences over numeric and symbolic data that are recognized and isolated by the compiler.

The demands upon the Parcel microtasking library are quite strenuous, for two reasons.
First, the parallel codes produced by the compiler contain deeply nested, often recursive parallel-
ism; second, the shape and granularity of the parallel computation varies dramatically from one
program to another, and even from one data set to another. It is the responsibility of the micro-
tasking library to select between parallel and sequential procedure versions to achieve a sufficient
degree of parallelism and load balancing while retaining as much of the efficiency of the sequen-
tial computation as poosable. More stacks that processors are used by the microtasking system,
to break the traditional linkage between processors anc atacks, for more flexible and efficient
scheduling of parallel threads of activity. The microtasking system of Parcel is described in
[ChHa9O].



11.4. Miprac

Miprac is a successor to Parcel, in which the interprocedural analysis and transformations
developed for Scheme programs in Parcel are fused with older techniques for the analysis and res-
tructuring of Fortran programs, to yield a flexible tool for the analysis and restructuring of pro-
cedural languages generally. In the past, the intermediaLe form upon which a parallelizing com-
piler operated had a primarily syntactic correspondence to the program being compiled. For
example, the intermediate form of Parafrase and KAP is essentially a syntax trees of the source
program. We propose, however, an intermediate form with a primarily semantic correspondence
to the program being compiled. To this end, we have designed MI (Miprac Intermediate
Language) to have three types of constructs: control (iteration, condition, sequence, branch),
memory access (read, write, synchronization, file manipulation), and operations (addition, multi-
plication, etc). These three types of constructs correspond closely to common semantic domains,
so that to rewrite a program into MIL is very much like giving the semantics of the program in
terms of prescribed semantic domains. We are implementing translators from Fortran 77, C,
and Scheme into MIL, in order to demonstrate its flexibility.

Because MiL allows branching, it has a non-compositional semantics (a continuation seman-
tics). However, in Miprac most transformations apply to NMIL (Normalized MIL) in which
branching has been eliminated by control-flow normalization. NMIL has compositional seman-
tics, so that dataflow analysis and transformation of a NMIL program is straightforward to
implement and verify. The control-flow normalization used in Miprac derives from that intro-
duced in PAF [TaDF88], and is described in [Amma89].

Interprocedural analysis in Miprac is an extension of the analysis performed in Parcel to
permit arithmetic on pointer variables (generalized access in blocks of dynamically allocated
storage) as well as closures (higher-order procedures with side-effects). Because it is essentially
typeless, MIL easily accommodates programs written in languages like C and Fortran in which
type casting and outright type violations are commonplace.

ImI. Parallel Iterative Solver for Sparse Nonsymmetric Linear Systems

Practical iterative solvers for large sparse nonsymmetric linear systems Az=b usually
require A to satisfy special properties, such as having a positive definite symmetric part or all
eigenvalues with positive real parts. One class that guarantees convergence for any nonsingular
matrix A are row projection (RP) methods, iterative algorithms that partition the rows of A into
blocks Arf[A,A 2,...,AI and then compute orthogonal projections onto range(A,) (i=,...,m) on
each iteration. Two general classes of RP methods have been examined, the product or
Kaczmarz [Kacz39J and sum or Cimmino [Cimm39] forms. Both iterative forms are accelerated
using conjugate gradients, as initially suggested by A. Bjbrck and T. Elfving in [BjE179] and
implemented for two-dimensional problems by C. Kamath and A. Sameh in [Kama86].

Several theoretical and numerical results have been obtained for RP methods in the last
year. Among them are:

e The limit points of RP methods have been characterized, for arbitrary choices of iteration
parameters and block row partitionings [Bram89J. RP methods converge even when tb' system
is singular or rectngi!nr, and for least squares problems it is important ,o know what 'solution'
Lhe method finds.



o The choice of w=1 has been shown to be optimal for the iteration parameter for bothI theoreti-
cal and computational reasons [KaSa88, BrSa89a].

o The underlying connections between the sum and product RP forms and CG applied to the nor-
mal equations have been discovered. This provides a basis of comparison of the methods, as well
as one guide for choosing block row partitionings.

* By combining the properties of orthogonal projectors with those of the CG algcithm, one p;u-
jection per CG iteration can be eliminated by using a special choice of the starting vector
[BrSa88].

o A new RP method has been developed [BrSa89a]. CG acceleration of this system provides an
error-minimizing algorithm, and the new system also allows an explicit reduction in the problem
size.

o An error analysis of the methods showed that it is essential to compute the projections accu-
rately. This in turn restricts the types of block row partitionings allowable.

o An approach to finding row partitionings that allow parallelism in the computations has been
developed [BrSa89b. This approach is based on a domain decomposition idea, and depends only
on the discretization operator used and not on any regularity of the domain of the PDE.

The last item yields RP methods implementations that are frequently faster than other
solvers, because for problems on an n x n x n mesh, e.g., they provide 0(n 2) parallelism for
speed and work on subproblems of size O(n), giving good data locality.

N=13824 N=216000
Method 1 2 3 4 5 6 1 2 3 4 5 6

KACZ
V-RP MX MX

C0MM MX

GMRES RS RS RS TM

ILU RS RS RS RS UP UI UP

MILU RS RS RS RS RS RS UP RS RS UP

CGNE _MX MX MX MX

ILCG UP MX MX UP TM UP TM

Table 1: Failures Among Methods

RP methods have proven to be more robust numerically than other commonly used non-
symmetric iterative algorithms, including the theoretically robust method of conjugate gradients
(CG) applied to the normal equations A r Az=A Tb and Krylov subspace methods. Table 1 shows
the robuisr.h"as results of testing with six three-dimensional non-selfadjoint elliptic PDE's from
[BrSa89a], and that source should be consulted for the particulars of the equations and discretiza-
tions used. KACZ is the product form RP method, CIMM the sum form, and V-RP the newly



developed RP method. GMRES refers to GMRES(10), C%, NE to CG on the normal equations,
(M)ILU to GMRES(1O) preconditioned with (M)ILU, and ILCG to an ILU preconditioned CGNE.
All were tested on systems of order N, with N given in the table. Error conditions are given by
the following codes:

* MIX: Maximum iterations reached
" UP: Unstable preconditioner
" RS: Residual stagnates
" TM: M~ximum allowed CPU time reached

Clearly the RP solvers have a robustness unmatched by the other methods tested.



March 9, 190

References

[Amma89] Zahira Ammarguellat, Control-Flow Normalization of Programs, CSRD
Technical Report #885, Center for Supercomputing Research and Develop-
ment, University of Illinois - Urbana, 1989.

[Bram8O] R. Bramley, Row Projection Methods for Linear Systems, CSRD Technical
Report #881, Center for Supercomputing Research and Development,
University of Illinois - Urbana, 1989.

[BjE179] A. Bji'rck, T. Elfving, Accelerated Projection Methods for Computing
Pseudo-inverse Solutions of Systems of Linear Equations, BIT, 145-163,
19(1979).

[BrSa88] R. Bramley and A. Sameh, A Robust Parallel Solver for Block Tridiagonal
Systems, CSRD Technical Report #806, Center for Supercomputing
Research and Development, University of Illinois - Urbana, 1988.

[BrSa89a] R. Bramley and A. Sameh, Row Projection Methods for Large Non.aymmetric
Linear Systems, submitted to SIAM J. Sci. Stat. Comp., September 1989.

lBrSa89b] R. Bramley and A. Sameh, Domain Decomposition for Parallel Row Projec-
tion Algorithms, submitted to Applied Numer. Math., October 1989.

[ChHa0] Jyh-Herng Chow and Williams Ludwell Harrison III, Microtasking for Recur-
sive, Parallel Programs, CSRD Technical Report, 1989 (work in progress).

[Cimm39] G. Cimmino, Calcolo Approssimato per le Soluzioni dei Sistemi di Equazioni
Lineari, Ric. Sci. Progr. tecn. econom. naz., 326-333, 9(1939).

[HaPa88] Williams Ludwell Harrison III and David A. Padua, PARCEL: Project for the
Automatic Restructuring and Concurrent Evaluation of Lisp, Proceedings
of the 1988 International Conference on Supercomputing, ACM, July 1988.

[Harr89] Williams Ludwell Harrison III, The Interprocedural Analysis and Automatic
Parallelization of Scheme Programs, Lisp and Symbolic Computation: an
International Journal, Vol 2 No 3, 1989.

[Kacz39] S. Kaczmarz, Angen'herte Aufl'sung von Systemen Linearer Gleichungen,
Bull. intern. Acad. polonaise Sci. lettres (Cracouie); Class sci. math. natur.:
Seira A. Sci. Math., 355-357 (1939).

[Kama86] C. Kamath, Solution of Non. ymmetric Systems of Equations on a Multiproces-
sor, CSRD Technical Report #591, Center for Supercomputing Research



March 0, 19o 2

and Development, University of Illinois - Urbana (1986).

[KaSa88] C. Kamath and A. Sameh, A Projection Method for Solving Nonsymmetric
Linear Systems on Multiprocessors, Parallel Computing, 291-312,
9(1988/1989).

[KLSD84] David Kuck, Duncan Lawrie, Ahmed Sameh and Edward Davidson, Con-
struction of a Large-Scale Multiprocessor, September 1984.

[TaDF88] N. Tawbi, A. Dumay, P. Feautrier, PAF: un Paralleliseur Automatique pour
Fortran, Laboratoire MASI - University of Paris 6, #185, May 1987.

[Turn8] Stephen Wilson Turner, Shared Memory and Interconnection Network Perfor-
mance for Vector Multiprocessors, CSRD Technical Report #876, Center
for Supercomputing Research and Development, University of Illinois -

Urbana, May 1989.


